We wish to thank Dr J. F. Weiher and Mr J. L. Gillson for magnetic and conductivity measurements. Mr D. P. Kelly and Mr D. M. Graham gave competent experimental help. We also want to acknowledge Dr D. B. Rogers's interest in this work.

References

- BRISSE, F. (1967). Ph.D. Thesis, Dalhousie University, Halifax, Nova Scotia.
- CROMER, D. T. (1965). Acta Cryst. 18, 17.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A 24, 321.
- DONALDSON, J. D. (1967). In Progress in Inorganic Chem-
- istry, Vol. 8, pp. 287-356. New York: Interscience.
- FINGER, L. W. (1969). Unpublished computer program for
- the least-squares refinement of crystal structures.
- FRITCHIE, C. J. & GUGGENBERGER, L. J. (1967). Unpublished electron density summation program.
- GASPERIN, M. (1955). C. R. Acad. Sci. Paris, 240, 2340.
- GASPERIN, M. (1960). Bull. Soc. Fr. Minér. Crist. 83, 1.
- GIER, T. E., PEASE, D. C., SLEIGHT, A. W. & BITHER, T. A. (1968). *Inorg. Chem.* 7, 1646.

- International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: Kynoch Press.
- JEITSCHKO, W. (1972). Acta Cryst. B28, 60.
- McColm, I. J. & Steadman, R. (1970). J. Solid State Chem. 2, 555.
- MOORE, W. J. & PAULING, L. (1941). J. Amer. Chem. Soc. 63, 1392.
- PLAKHOV, G. F., POBEDIMSKAYA, E. A., SIMONOV, M. A. & BELOV, N. V. (1971). Sov. Phys. Crystallogr. 16, 928.
- RUNDLE, R. E. & OLSON, D. H. (1964). Inorg. Chem. 3, 596.
- SHANNON, R. D. & PREWITT, C. T. (1969). Acta Cryst. B25, 925.
- SILLÉN, L. G. & NYLANDER, A. (1943). Ark. Kem. Min. Geol. 17A, No. 4, 1.
- WYCKOFF, R. W. G. (1963). Crystal Structures. Vol. 1, p. 318. New York: Interscience.
- WYCKOFF, R. W. G. (1965). *Crystal Structures*. Vol. 3, pp. 45-51, 55-58. New York: Interscience.
- WYCKOFF, R. W. G. (1968). Crystal Structures. Vol. 4, p. 167. New York: Interscience.
- YVON, K., JEITSCHKO, W. & PARTHÉ, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Report of the Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pa.

Acta Cryst. (1972). B28, 3178

The Crystal and Molecular Structure of Uranyl Oxalate Trihydrate

BY N.C. JAYADEVAN AND D. M. CHACKRABURTTY

Radiochemistry Division, Bhabha Atomic Research Centre, Bombay-85, India

(Received 30 June 1972)

Uranyl oxalate trihydrate, $UO_2C_2O_4$. $3H_2O$, crystals are monoclinic with lattice parameters a = 5.623 (5), b = 17.065 (2), c = 9.451 (3) Å and $\beta = 98.74$ (1)°. The space group is $P2_1/C$ with Z = 4. 513 visually estimated reflexions were corrected for absorption and the structure refined by Fourier and least-squares methods to R = 0.079. Each uranium atom exists as a linear $(O-U-O)^{2+}$ ion with five secondary oxygen atoms coordinated to it in a perpendicular plane. The average distances are $U-O_1 = 1.63$ (4) and $U-O_{11} = 2.49$ (4) Å. The oxalate groups are planar and tetradentate, each bridging two uranyl ions. Only one water molecule is coordinated to the uranium atom. The structure is consistent with the thermal behaviour of the compound.

Introduction

Several oxalato complexes of dioxouranium(VI) with varying uranium to oxalate ratios are known, but no detailed structural work has been reported. The fact that an anhydrous ammonium salt of $[UO_2(C_2O_4)_3]^{4-}$ was isolated was interpreted to show that in oxalato complexes the uranyl ion requires six ligands in a plane for coordination saturation (Chernyaev, 1966). In the bisoxalatodioxouranate(VI) complexes two water molecules are assumed to complete the hexagonal arrangement. But substitution reactions on bisoxalato complexes (Shchelokov & Belomestnykh, 1969) have indicated a pentagonal coordination for the uranyl ion,

which is sterically and geometrically stable in a plane (Evans, 1963). We have initiated detailed structural investigation of solid oxalate complexes by the method of single-crystal X-ray diffraction. The crystal and molecular structures of uranyl oxalate trihydrate are discussed here.

Preparation

A hot saturated solution of oxalic acid was added to a concentrated solution of pure uranyl nitrate in 1.0M nitric acid at 80 °C. The crystals separated on standing and were washed with water, alcohol and ether. Chemical and thermal analysis confirmed the composition $UO_2C_2O_4.3H_2O$.

* Ani

Crystallography

The crystal data are shown in Table 1. The cell dimensions are the same as those reported by Jenkins, Moore & Waterman (1965). However, two reflexions, 003 and 201, in their data are wrongly indexed. These could be re-indexed as 122 and $\overline{152}$ respectively without affecting the cell constants derived by them. In the single-crystal Weissenberg photographs, the h+k odd reflexions are generally weak, but the only extinctions are h0!: l odd, and 0k0: k odd, the space group thus being uniquely determined as $P2_1/C$ in agreement with early goniometric measurements of Staritzky & Cromer (1956).

Table 1. Crystal data

Standard deviations given in parentheses refer to the last figure.

a = 5.623 (5) Å	$D_m = 3.07 (1) \text{ g.cm}^{-3}$
b = 17.065(2)	$D_c = 3.05$
c = 9.451(3)	$V = 896 \text{ Å}^3$
$\beta = 98.74 (1)^{\circ}$	Z = 4

Space group $P2_1/c$. Systematic absences: 0k0, k odd and h0l, l odd.

The diffraction data were photographed on three films using the equi-inclination multiple-film method using copper $K\alpha$ radiation. Crystal A of approximate dimensions $0.03 \times 0.008 \times 0.008$ cm was used to photograph layer lines hkn (n=0,1,2) while crystal B of approximate dimensions $0.012 \times 0.005 \times 0.005$ cm was used for nkl (n=0,1,2) layer-line data.

The intensities were estimated visually. Standard errors σ were assigned to each intensity and weights $w=1/\sigma^2$, were used in the final stages of the refinement. Greater weights were given to reflexions which could be measured on all three films than to those which could be measured on only one or two films. Thus $\sigma=0.05F_{obs}$ if $100 < F_{obs} < 250$; $\sigma=0.08F_{obs}$ if $50 < F_{obs} < 100$ or $250 < F_{obs} < 300$ and $\sigma=0.10F_{obs}$ if $300 < F_{obs}$ or $F_{obs} < 50$. Unobserved reflexions were given an intensity equal to half the local minimum observed intensity with $\sigma=0.50F_{obs}$ and were included in the least-squares analysis only if $F_{calc} \ge 0.5F_{obs}$.

Structure solution and refinement

The measured intensities were reduced to structure factors after applying the necessary Lorentz and polarization corrections. All the data obtained with crystal A were also corrected for absorption assuming the crystal was a cylinder of radius 0.004 cm ($\mu R = 2.52$). Crystal B data were not corrected for absorption.

Separate Patterson functions of the two zero-layer intensities showed that the uranium atom was at (0.27, 0.067, 0.260). Structure factors calculated with the uranium atom at this position and an isotropic temperature factor of 0.5 gave an overall R_1 value $[\sum (F_{obs} - |F_{calc}|)/\sum F_{obs}]$ of 0.24 for the scaled reflexions. Further, the uranium atom position was such that its contribution for h+k odd reflexions was negligible, in agreement with the observed intensity distribution. A three-dimensional difference Fourier synthesis using the heavy-atom phases showed five oxygen atom positions. Repeated structure-factor calculations with an increasing number of atoms located from Fourier maps led to the remaining oxygen and carbon atom positions.

The atomic positions and the isotropic temperature factors of all atoms were refined by the least-squares method using the program ORFLS (Busing, Martin & Levy, 1962) on a CDC-3600 computer until a minimum R_2^* of 0.12 was reached. The scattering factors for U²⁺ were derived from U⁰ and U³⁺ data of Cromer & Waber (1965), while those for oxygen and carbon were from International Tables for X-ray Crystallography (1962). The uranium temperature factor was converted to anisotropic factors and refinement continued until the minimum of $R_1 = 0.079$ and $R_2 = 0.085$ was reached. The atomic coordinates are listed in Table 2 and the corresponding structure factors compared with the observed values in Table 3. In the final cycle of refinements all parameter changes were less than 0.2 of its standard deviation. A difference synthesis based on the data in Table 3 had no peaks that could be ascribed to any atom.

*
$$R_2 = \left[\sum w(F_{obs}^2 - |F_{calc}|^2) / \sum w F_{obs}^2\right]^{1/2}$$

Table 2. Atomic parameters

			-		
	x		У	Z	В
U	0.27136 (22)	0.06	735 (9)	0.25796 (13)	*
O(1)	0.4905 (71)	0.05	16 (22)	0.3864 (48)	2.3
O(2)	0.0505 (71)	0.08	71 (21)	0.1309 (47)	2.0
O(3)	0.3630 (52)	-0.04	29 (18)	0.1261 (35)	1.5
O(4)	0.5550 (54)	0.08	81 (20)	0.0780 (40)	2.0
$\mathbf{C}(1)$	0.4512 (75)	-0.04	17 (26)	0.0105 (50)	3.1
O(5)	0.0531 (50)	-0.04	30 (18)	0.3509 (34)	2.0
O (6)	-0.0213(55)	0.09	18 (21)	0.4391 (41)	2.4
C(2)	0.0198 (70)	-0.03	96 (22)	0.4686 (39)	3.2
O(7)	0.3226 (44)	0.20	87 (15)	0.2912 (30)	1.3
O(8)	0.6769 (60)	0.27	61 (20)	0.4818 (42)	2.7
O(9)	0.9674 (42)	0.30	18 (16)	0.2373 (30)	2.6
sotropic temp	perature factors				
B ₁₁	β12	β33	β_{12}	β_{13}	β_{23}
0.0038	(5) $0.0017(1)$	0.0058 (3)	0.0006 (2)	-0.0014 (6)	0.0001(1)

Table 3. Observed and calculated structure factors ($\times 10$)

Unobserved reflexions are marked with an asterisk.

FORS FCALC	FOBS FCALC	FORS FOLC	FURS FCALC	EDUS EALE
H K L = 0	2 14 662 -730 2 15 • 476 BAR	2 0 2766 3n13	1 3 4 465 460	2 8 4 3 -567
F093 FCALC H K L = 0 1 0 448 -327 2 0 2176 -1004 3 0 1230 -1239 5 0 1030 -1205 6 2 3046 -3077 0 2 3046 -3255 0 10 1007 -1007 0 12 272 278 0 14 1344 1473 1 1 1433 -1215 1 1 1433 -1215 1 1 1433 -1215 1 1 1433 -1215 1 0 1404 -378 1 0 1600 1638 1 10 3543 1212 1 10 3543 1212 1 10 3543 1313 10 3555	FOBS FCALC 2 14 662 -73C 2 15 • 776 545 2 19 1062 1062 3 2 982 -837 3 4 1016 -732 3 5 1042 1061 3 4 1016 -732 3 5 1244 -1143 3 6 305 -392 3 7 2033 -1327 2 10 1229 -1433 4 1122 -1633 4 1122 -1633 4 1122 -1633 4 1162 -1013 4 1162 -1013 5 11 1263 4 1162 -1013 5 11 1263 5 603 704 5 1103 1205 5 603 724 5 703 704 5 703 704	FnRS fCLLC X 0 2746 3n13 X 1 1054 -1019 X 2 2368 7386 X 6 2021 -1018 X 6 2021 -1076 X 6 2021 -1739 X 6 2021 -1739 X 6 1163 -1739 X 13 515 518 X 13 1163 -1739 X 13 515 519 Y 13 13193 -2032 Y 1303 -21379 603 Y 1305 11635 6137 Y 10050 11635 6137 Y 10052 -1683 633 Y 10825 -1633 Y 10825 11637 Y 10825 11637 Y 10831 11637	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Results and discussion

The (010) projection of the unit cell is shown in Fig. 1, where the numbering of the atoms corresponds to that used in Table 2. Table 4 gives all chemically relevant bond distances and bond angles, while Table 5 lists all intermolecular interatomic non-bonded distances less than 3.0 Å.

The uranium atoms exist in the crystal as linear uranyl groups. The average U–O distance of 1.63 (4) Å and the O–U–O angle of 178 (2)° are within the range

Fig. 1. (010) projection of the unit cell.

Fig. 2. Schematic drawing of the uranyl coordination. The O-U-O axis is perpendicular to the plane of the paper. O(7) is the oxygen atom of the single water molecule coordinated to the uranium atom. The O-O contact distances in Å are shown.

Table 4. Bond distances and bond angles

The superscripts refer to the atoms generated by (i) 1-x, -y, -z and (ii) -x, -y, 1-z

Dand distance	(8)		
Bond distances	; (A)		
U-O(1) 1.	62 (4)	C(1)-O(3)	1.27 (6)
U-O(2) 1.	63 (4)	$C(1) - O(4^{i})$	1.15 (6)
U-O(3) 2.	38 (4)	$\mathbf{C}(1) - \mathbf{C}(1^{i})$	1.55 (6)
U-O(4) 2.	52 (4)	C(2) - O(5)	1.16 (6)
U = O(5) = 2	48 (3)	$C(2) = O(6^{11})$	1.25 (6)
U = O(6) = 2	56 (4)	$C(2) = C(2^{11})$	1.25(0) 1.51(6)
$U_{-}O(7) = 2$	JU (4) AA (3)	C(2) = C(2)	1 51 (0)
$0 - 0(7) = 2^{-1}$	+4 (3)		
Pond angles (°	`		
bonu angles ()		
O(1) - U - O(2)	178 (2)	O(3)O(4)	63 (1)
O(1) - U - O(3)	93 (2)	O(3) - U - O(5)	75 (1)
O(1) - U - O(4)	92 (2)	O(6) - U - O(5)	60 (1)
O(1) - U - O(5)	88 (2)	O(6) - U - O(7)	80 (7)
O(1)-U-O(6)	91 (2)	O(4) - U - O(7)	82 (1)
O(1) - U - O(7)	90 (2)	$O(3) - C(1) - O(4^{1})$	130(4)
O(2) - U - O(3)	89 (2)	$O(3) - U - C(1^{i})$	108 (4)
O(2) - U - O(4)	88 (2)	$O(4^{i}) = C(1) = C(1^{i})$	121(4)
$O(2) \cup O(3)$	00(2)	O(5) = C(1) - C(1)	121(4)
O(2) = U = O(3)	$\frac{33}{2}$	$O(5) = U(2) - O(0^{11})$	110 (4)
O(2) = U = O(0)	00 (2)	$O(3) - U - O(2^{-1})$	119 (4)
U(2) = U = U(7)	88 (2)	$U(6^{++}) \sim C(2) - C(2^{++})$	111 (4)

Table 5. Intermolecular interatomic distancesless than 3.0 Å

The superscripts refer to the following transformations:

(iii) $1-x, -y, 1-z$ (v) $x, \frac{1}{2}-y, z-\frac{1}{2}$ (vii) $x, \frac{1}{2}-y, \frac{1}{2}+z$	(iv) $-x, y, z$ (vi) $-x, y-\frac{1}{2}, \frac{1}{2}-z$
O(1)-O(1 ⁱⁱⁱ)	2·77 (5) Å
$O(2) - O(4^{1v})$	2.76 (5)
$O(4) - O(8^{v})$	2.62(5)
$O(5) - O(9^{v_1})$	2.78 (4)
$O(6) - O(1^{iv})$	2.80 (5)
O(7)-O(8)	2.73 (4)
O(7)–O(9)	2.54 (4)
$C(2) - O(1^{11})$	2.89 (5)

of values observed in uranyl complexes of similar coordination (Åberg, 1969).

The most noticeable feature of the structure is the tetradentate nature of the oxalate groups. Each oxalate group acts as a bridge between two uranyl ions using all the four oxygen atoms for coordination. The oxalate groups occupy centrosymmetric positions and are planar. Recently such tetradentate oxalate groups have been reported to be present in $(NH_4)_2(UO_2)_2(C_2O_4)_3$ (Alcock, 1968) and $K_4Th(C_2O_4)_4$.4H₂O (Akhtar & Smith, 1969) and are probably responsible for the ready formation of a large number of stable actinide oxalate complexes.

There are two oxalate groups associated with the uranyl ion, each using two oxygen atoms for coordination. One of the three water molecules is also coordinated to the uranyl group through the oxygen atom, thereby making the uranium atom seven coordinated. The five individual U-O distances are not significantly different from the average value of 2.49 (4) Å. The five oxygen atoms and the uranium atom form a plane,

0.6688X - 0.1679Y + 0.7243Z = 2.2837

(where X, Y and Z correspond to the a, b and c* axes respectively) which is perpendicular to the O-U-O axis. The individual deviations in Å of the atoms from the plane are U (0.04), O(3) (-0.06), O(4) (0.00), O(5) (0.08), O(6) (-0.07) and O(7) (0.02).

The bond distances and bond angles of the two independent oxalate groups are the same as those found in many other oxalate compounds (Glen, Silverton & Hoard, 1963; Hansson, 1970). The oxalate groups form stable five-membered rings with the uranium atom, unlike the four-membered rings formed in the acetato, nitrato and carbonato complexes of uranyl (Zachariasen & Plettinger, 1959; Barclay, Sabine & Taylor, 1965; Mazzi & Rinaldi, 1961). Very short 'biting' distances in the latter ligands lead to planar hexagonal coordination. The longer O-O distance of 2.5-2.6 Å of the oxalate group favours pentagonal coordination perpendicular to the O-U-O axis. The O-O contact distances within the pentagon are shown in Fig. 2.

As explained above, two water molecules per formula unit of the compound are not involved in coordination to the uranium atom. The non-bonded O-O distances between the water molecules suggest that these are probably involved in hydrogen bonding. Hydrogen bonding between the free water molecules and the water molecule coordinated to the uranium atoms help to link the different zigzag layers of $[UO_2(C_2O_4) \cdot H_2O]_n$ chains, as shown in Fig. 3. In addition, two oxygen atoms of each oxalate group also appear to be hydrogen bonded to the free water molecules in a way similar to that found in $Nd_2(C_2O_4)_3$. 10.5H₂O (Hansson, 1970). The thermal behaviour of uranyl oxalate is in agreement with the differential nature of the water molecules. On heating, two water molecules are lost at 100°C while the third is lost only at 170°C (Padmanabhan, Saraiya & Sundaram, 1960).

The authors express their thanks to Dr M. V. Ramaniah, Head of the Radiochemistry Division for his interest in the work and to Mr H. Rajagopal, Nuclear Physics Division for his help with computer programs.

References

AKHTAR, M. N. & SMITH, A. J. (1969). Chem. Commun. p. 705.

Fig. 3. (100) projection of the unit cell. The broken lines indicate possible hydrogen bonding by the water molecules with O-O distances in Å.

ALCOCK, N. W. (1968). Chem. Commun. p. 1327.

- BARCLAY, G. A., SABINE, T. M. & TAYLOR, J. C. (1965). Acta Cryst. 19, 205.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CHERNYAEV, I. I. (1966). Complex Compounds of Uranium. English Translation, pp. 114–144. Jerusalem: Israel Program for Scientific Translations.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- EVANS, H. T. JR (1963). Science, 141, 154.
- GLEN, G. L., SILVERTON, J. V. & HOARD, J. L. (1963). Inorg. Chem. 2, 250.
- HANSSON, E. (1970). Acta Chem. Scand. 24, 2969.
- International Tables for X-ray Crystallography (1962). Vol. III. Table 3.3.1A. Birmingham: Kynoch Press.
- JENKINS, I. L., MOORE, F. H. & WATERMAN, M. J. (1965). J. Inorg. Nucl. Chem. 27, 77.
- MAZZI, F. & RINALDI, F. (1961). Period. Mineral. 30, 1.
- PADMANABHAN, V. M., SARAIYA, S. C. & SUNDARAM, A. K. (1960). J. Inorg. Nucl. Chem. 12, 356.
- SHCHELOKOV, R. N. & BELOMESTNYKH, V. (1969). Zh. Neorg. Khim. 14, 2466.
- STARITZKY, E. & CROMER, D. T. (1956). Anal. Chem. 28, 1353.
- ZACHARIASEN, W. H. & PLETTINGER, H. A. (1959). Acta Cryst. 12, 526.
- ÅBERG, M. (1969). Acta Chem. Scand. 23, 791.